

Published on Web 02/01/2007

Snapshots of an Alkylidyne for Nitride Triple-Bond Metathesis

Brad C. Bailey,[‡] Alison R. Fout,[‡] Hongjun Fan,[‡] John Tomaszewski,[‡] John C. Huffman,[‡] J. Brannon Gary,[†] Marc J. A. Johnson,[†] and Daniel J. Mindiola^{*,‡}

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, and Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, Indiana 47405

Received December 14, 2006; E-mail: mindiola@indiana.edu

Metathesis reactions involving alkynes and M=CR linkages constitute an important and an emerging field from a stoichiometric and catalytic perspective.^{1,2} Moreover, the process denoted "alkyne metathesis" is now becoming a standard procedure for reactions such as cross-metathesis^{3,4} and ring-closing metathesis,² the latter of which has resulted in the design of natural products, and pharmaceutically important molecules.² Although alkyne metathesis or Wittig-like reactions are a known occurrence in organotransition metal chemistry¹⁻⁴ and metal-metal multiply bonded frameworks,⁵ metathetical reactions involving alkylidynes in groups 4 or 5 have thus far been unknown.^{1,3k} This situation may be traced to the scant number of terminal transition metal alkylidyne systems prior to group 6.^{1,6}

Given our ability to generate highly nucleophilic and terminal titanium alkylidynes,⁷ it was speculated that nitriles should undergo alkylidyne for nitride exchange. This hypothesis was particularly appealing for two reasons. Azametallacyclobutadiene intermediates along the alkylidyne/nitrile metathesis, involving M≡CR linkages, have been proposed but not observed.^{3c,i,j} Additionally, terminal titanium nitrides (or group 4 nitrides) are an unknown class of ligands and are expected to be inherently reactive given the likely polarized nature of the M≡N multiple bond.

In this paper we show that nitriles, such as $N \equiv C'Bu$ and $N \equiv CAd$ (Ad = 1-adamantyl), [2+2] cycloadd across the neopentylidyne linkage of intermediate (PNP)Ti $\equiv C'Bu^7$ (A) (PNP = N[2-P(CHMe₂)₂-4-methylphenyl]₂⁻), to afford the first examples of azametallacyclobutadienes, specifically (PNP)Ti(NCRC'Bu) (R = 'Bu, 1; Ad, 2). Addition of electrophiles such as Me₃SiCl or Al(CH₃)₃ to the latter complexes promote complete 'BuC³⁻ for N³⁻ exchange thus forming the trapped titanium nitride concurrent with extrusion of the alkyne 'BuC \equiv CR. A combination of computational and isotopic labeling studies support the notion that the metallacycle scaffolds in 1 and 2 are planar rings, with significant multiple bond character between Ti and N. In addition, experiments utilizing ¹⁵N enriched ¹⁵N \equiv CAd^{4,8} clearly reveal the titanium imide nitrogen to originate from complete metathetical exchange with the nitrile.

When (PNP)Ti=CH'Bu(CH₂'Bu)⁷ is treated with N=C'Bu (neat or stoichiometric), immediate precipitation of an orange colored solid, **1**, is readily observed (Scheme 1). In C₆D₆, the ¹H NMR spectrum of **1** is indicative of formation of a single titanium product having two inequivalent 'Bu groups, as well as an asymmetric PNP framework. The latter salient feature is further manifested by two doublets in the ³¹P NMR spectrum. Most notably, the ¹³C NMR spectrum of **1** revealed two highly deshielded resonances at 240.5 and 178.0 ppm, neither of which is coupled to a H, and is comparable to ¹³C resonances for previously reported tungstenacyclobutadienes.⁹ When an analogous reaction involving (PNP)-Ti=CH'Bu(CH₂'Bu) and N=CAd is conducted in C₆H₁₂, complex Scheme 1. [2+2] Cycloaddition Reactions with Nitriles Involving Both Ti $\equiv\!C'\!Bu$ and Ti $=\!CH'\!Bu$ Linkages

2 also precipitates as an orange colored powder in high yield (73%, Scheme 1). Multinuclear NMR spectral data for 2 displays similar spectroscopic signatures to 1.89 When the reaction was performed in cyclohexane using a slight excess of ~40% enriched ¹⁵N=CAd,^{4,8} the ¹⁵N NMR spectrum of (PNP)Ti(¹⁵NCAdC'Bu) (2)-¹⁵N signified a deshielded resonance at 672.6 ppm (55 °C, referenced to NH₃(1) at 0 ppm).⁸ On the basis of the above observations, we propose that transient A undergoes a [2+2] cycloaddition of N≡CR to afford the azatitanacyclobutadiene species (planar-NC₂), 1 and 2 (Scheme 1).⁹ However, given our inability to obtain suitable crystals for X-ray diffraction analysis, it is possible to propose that the NC₂ fragment in systems such as 1 and 2 could also be bonded as an η^3 azacyclopropyltrianyl (cyclo-NC2, Scheme 1). Despite this possibility, the highly deshielded ¹⁵N resonance for the NC₂ framework in 2-15N agrees well with our predicted 15N NMR chemical shift by DFT methods (675.8 ppm),⁸ thus suggesting that 1 and 2 contain planar TiNC₂ motifs with significant Ti-N multiple bond character. In addition, computational studies predict the cyclo-NC2 isomer of 1 to be 39.6 kcal/mol higher in electronic energy (E(SCF)) versus the planar TiNC2 surrogate, and the ¹⁵N NMR chemical shift for this geometry is located 361.4 ppm upfield from the experimental value (vide supra).8

Formation of **1** and **2** is highly dependent on the nature of the nitrile. Consequently, when less hindered nitriles such as N=CR (R = Ph, 'Pr) are employed, Wittig-like chemistry precedes α -hydrogen abstraction, thus taking place exclusively at the alkylidene moiety in (PNP)Ti=CH'Bu(CH₂'Bu) to afford the imide-alkyls (PNP)Ti=N[C(R)CH'Bu](CH₂'Bu) (R = Ph, **3**; R = 'Pr, **4**) in excellent yields (Scheme 1).⁸ In addition to multinuclear NMR spectroscopic characterization (**3** and **4**), compound **3** has been scrutinized by single-crystal X-ray diffraction.⁸

Despite the TiNC₂ ring in complexes **1** and **2** being antiaromatic, they are exceedingly stable up to 100 °C when excluded from moisture and air. No exchange was observed when **1** or **2** was heated in an excess of NC'Bu, NCAd, PhC=CPh, or $(CH_3)_3SiC=$ $CSi(CH_3)_3$ thus hinting that the azatitanacyclobutadiene core in **1** and **2** is not amenable to fragmentation under these conditions. However, when complexes **1** and **2** were treated with ClSi(CH₃)₃,

[†] University of Michigan. [‡] Indiana University.

Figure 1. Synthesis of 5 and 6 and molecular structures with H-atoms, solvent, independent molecules, and isopropyl methyls excluded for clarity.

complete 'BuC³⁻ for N³⁻ exchange occurred quantitatively, concurrent with extrusion of the alkyne RC=C'Bu (R = 'Bu and Ad) and formation of the trimethylsilyl imide complex (PNP)Ti=N[Si-(CH₃)₃](Cl) (**5**) (Figure 2).⁸ The former organic byproduct was confirmed via ¹H and ¹³C NMR spectra, while the identity of complex **5** was established by an independent synthesis.¹⁰ In addition, the X-ray structure of **5** has been determined and unarguably depicts a five-coordinate titanium complex bearing a bent terminal trimethylsilyl imide functionality (Ti=N, 1.709(9) Å; Ti=N-Si, 151.9(2); Figure 1). The imide nitrogen in **5** was unequivocally confirmed to originate from nitrile metathesis with the transient Ti=C'Bu ligand, since the isotopomer **2-**¹⁵N cleanly produced (PNP)Ti=¹⁵N[Si(CH₃)₃](Cl) (**5**)-¹⁵N (¹⁵N NMR: 553.9 ppm, $J_{NP} = 2.3$ Hz) when treated with ClSi(CH₃)₃.⁸

When 1 or 2 was exposed to an excess of Al(CH₃)₃, 'BuC=CR was also formed along with the imide zwitterion (PNP)Ti= N[Al₂(CH₃)₄(μ -CH₃)](CH₃) (**6**).⁸ Salient ¹H, ¹³C, and ³¹P NMR spectroscopic features for **6** reveal a system bearing an intact PNP framework, and fluxional Al₂(CH₃)₄(μ -CH₃) motif.⁸ However, the ²⁷Al NMR spectrum of **6** evinced two broad Al resonances at 54 and 141 ppm in an 80:20 ratio, respectively.⁸ This feature was further corroborated by the ¹⁵N NMR spectrum of the ¹⁵N isotopically enriched (PNP)Ti=¹⁵N[Al₂(CH₃)₄(μ -CH₃)](CH₃) (**6**)-¹⁵N, prepared from **2**-¹⁵N and 2 equiv of Al(CH₃)₃, which also displayed two independent resonances at 527.9 (major) and 563.6 (minor) ppm.⁸ As a result, the ²⁷Al and ¹⁵N NMR solution spectra suggests at least two Ti species being present in solution.

To conclusively elucidate the connectivity of compound **6**, a single-crystal structural analysis was conducted. Amid the many salient features, the molecular structure clearly exposes a zwitterionic titanium imide-methyl complex (Ti-N32, 1.758(9); Ti-C31, 2.154(3) Å; Figure 1), bearing both an ⁺Al(CH₃)₂ and an Al(CH₃)₃ at the imide nitrogen.⁸ Therefore, each Al(CH₃)₂ fragment shares a ⁻CH₃ group by virtue of a $3c-2e^-$ bond. The imaginary plane composing the planar NAl₂C fragment bisects the PNP framework, and Ti=N multiple bond formation in **6** is evident when the short distance of 1.758(9) Å is compared to the pincer Ti–N amide linkage (2.038(8) Å). Consequently, the latter feature renders the former atom planar. The solid-state structure of **6** appears to be the lowest energy geometry and may not be reflective of how this system behaves in solution at room temperature.

Formation of compounds **5** and **6** raises the question as to whether a transient titanium nitride is generated during the course of the reaction. While complex **5** is unarguably formed via a putative trimethylsilyl cation adding to the azatitanacyclobutadiene nitrogen in **1** or **2**, formation of **6** obviously occurs by a different pathway. As depicted in Figure 1, $Al(CH_3)_3$ likely coordinates to the azametallacyclobutadiene nitrogen in **1** or **2** to afford transient **B**, which ultimately ejects the alkyne 'BuC=CR to form the Lewis

acid stabilized nitride C. By manner of a 1,2-AlC bond addition across the reactive Ti \equiv N linkage, and subsequent binding of another Al(CH₃)₃, formation of **6** is then plausible. However, we are unsure as to whether 1,2-AlC bond addition occurs prior to or after binding of the second Al(CH₃)₃.

Acknowledgment. We thank Indiana University-Bloomington, the Dreyfus Foundation, the Sloan Foundation, and the NSF (Grant CHE-0348941 to D.J.M.) for financial support of this research and John J. Curly for insightful discussions.

Supporting Information Available: All experimental details. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Schrock, R. R. Chem. Rev. 2002, 102, 145.
- (2) Fürstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012 and references therein.
 (3) For some metathesis reactions involving d⁰ alkylidynes. (a) Wengrovius, J. H.; Sancho, J.; Schrock, R. R. J. Am. Chem. Soc. 1981, 103, 3932. (b) Schrock, R. R.; Listemann, M. L.; Sturgeoff, L. G. J. Am. Chem. Soc. 1982, 104, 4291. (c) Freudenberger, J. H.; Schrock, R. R. Organometallics 1986, 5, 398. (d) Weiss, K.; Schubert, U.; Schrock, R. R. Organometallics 1986, 5, 397. Tsai, Y.-C.; Diaconescu, P. L.; Cummins, C. C. Organometallics 1986, 5, 397. Tsai, Y.-C.; Diaconescu, P. L.; Cummins, C. C. Organometallics 2000, 19, 5260. (e) Blackwell, J. M.; Figueroa, J. S.; Stephens, F. H.; Cummins, C. C. Organometallics 2003, 22, 3351. (f) Pollagi, T. P.; Geib, S. J.; Hopkins, M. D. J. Am. Chem. Soc. 1994, 116, 6051. (g) Giannini, L.; Solari, E.; Dovesi, S.; Floriani, C.; Re, N.; Chiesi-Villa, a.; Rizzoli, C. J. Am. Chem. Soc. 1999, 121, 2784. (h) Cho, H. M.; Weissman, H.; Wilson, S. R.; Moore, J. S. J. Am. Chem. Soc. 2006, 128, 14742–14743. (i) Chisholm, M. H.; Folting, K.; Lynn, M. L.; Tiedtke, D. B.; Lemoigno, F.; Eisenstein, O. Chem.-Eur. J. 1999, 5, 2318. (j) Gdula, R. L.; Johnson, M. J. A. J. Am. Chem. Soc. 2006, 128, 9614. (k) Schrock, R. R.; Weinstock, I. A.; Horton, A. D.; Liu, A. H.; Schofield, M. H. J. Am. Chem. Soc. 1988, 110, 2686.
- (4) (a) Gdula, R. L.; Johnson, M. J. A.; Ockwig, N. W. *Inorg. Chem.* 2005, 44, 9140. (b) Chisholm, M. H.; Delbridge, E. E.; Kidwell, A. R.; Quinlan, K. B. *Chem. Commun.* 2003, 126–127.
- (5) (a) Schrock, R. R.; Listemann, M. L.; Sturgeoff, L. G. J. Am. Chem. Soc. 1982, 104, 4291. (b) Strutz, H.; Schrock, R. R. Organometallics 1984, 3, 1600. (c) Listemann, M. L.; Schrock, R. R. Organometallics 1985, 4, 74. (d) Chisholm, M. H.; Huffman, J. C.; Marchant, N. J. Am. Chem. Soc. 1983, 105, 6162. (e) Chisholm, M. H.; Conroy, B. K.; Huffman, J. C. Organometallics 1986, 5, 2384. (f) Chisholm, M. H.; Eichhorn, B. W.; Folting, K.; Huffman, J. C. Organometallics 1989, 8, 49. (g) Chisholm, M. H.; Hoffman, D. A.; Huffman, J. C. J. Am. Chem. Soc. 1984, 106, 6806.
- (6) Terminal Ta alkylidynes have been reported. (a) McLain, S. J.; Wood, C. D.; Messerle, L. W.; Schrock, R. R.; Hollander, F. J.; Youngs, W. J.; Churchill, M. R. J. Am. Chem. Soc. 1978, 100, 5962. (b) Guggenberger, L. J.; Schrock, R. R. J. Am. Chem. Soc. 1975, 97, 2935.
 (7) Bailey, B. C.; Fan, H.; Baum, E. W.; Huffman, J. C.; Baik, M.-H.;
- (7) Bailey, B. C.; Fan, H.; Baum, E. W.; Huffman, J. C.; Baik, M.-H.; Mindiola, D. J. J. Am. Chem. Soc. 2005, 127, 16016.
- (8) See Supporting Information.
- (9) The TiNCC core in 1 and 2 is proposed to some structurally characterized metallacyclobutadiene species. (a) McCullough, L. G.; Listemann, M. L.; Schrock, R. R.; Churchill, M. R.; Ziller, J. W. J. Am. Chem. Soc. 1983, 105, 6729. (b) Pedersen, S. F.; Schrock, R. R.; Churchill, M. R.; Wasserman, H. J. J. Am. Chem. Soc. 1982, 104, 6808. (c) Churchill, M. R.; Ziller, J. W.; Freudenberger, J. H.; Schrock, R. R.; Dewan, J. C.; Murdzek, J. C. J. Am. Chem. Soc. 1985, 107, 5987. (e) Schrock, R. R.; Pedersen, S. F.; Churchill, M. R.; Ziller, J. W. Organometallics 1984, 3, 1574.
- Bailey, B. C.; Basuli, F.; Huffman, J. C.; Mindiola, D. J. Organometallics 2006, 25, 2725.

JA0689684